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Abstract

Two-dimensional Godunov mixed methods have been shown to be effective for the numerical solution of density-

dependent flow and transport problems in groundwater even when concentration gradients are high and the process

is dominated by density effects. This class of discretization approaches solves the flow equation by means of the mixed

finite element method, thus guaranteeing mass conserving velocity fields, and discretizes the transport equation by

mixed finite element and finite volumes techniques combined together via appropriate time splitting. In this paper,

we extend this approach to three dimensions employing tetrahedral meshes and introduce a spatially variable time step-

ping procedure that improves computational efficiency while preserving accuracy by adapting the time step size accord-

ing to the local Courant–Friedrichs–Lewy (CFL) constraint. Careful attention is devoted to the choice of a truly three-

dimensional limiter for the advection equation in the time-splitting technique, so that to preserve second order accuracy

in space (in the sense that linear functions are exactly interpolated). The three-dimensional Elder problem and the salt-

pool problem, recently introduced as a new benchmark for testing three-dimensional density models, provide assess-

ments with respect to accuracy and reliability of this numerical approach.
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1. Introduction

The study of coupled flow and transport problems in porous media has received growing interest in the

last few years within the specialized literature. In particular, the recent development of efficient numerical
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techniques and of fast and easily available computational tools has promoted a number of studies concern-

ing the modeling aspects of the phenomenon [1–4]. The occurrence of local recirculation patterns due to the

density differences that appear in the presence of dissolved salts in the groundwater renders the coupled

flow and transport equations nonlinear and contributes to the difficulties encountered in the numerical sim-

ulations of this type of problems.
Recently developed well-controlled lab experiments [5–7] have contributed to the understanding of the

physical phenomenon and have prompted the use of these solutions as benchmark test cases for numerical

simulators. A recent review on these aspects [8] and a few significant applications [9,10] have shown that the

correct accuracy and reliability of the numerical solutions may not be rapidly attainable. In particular, in

the case of three-dimensional simulations, the numerical difficulties may easily become overwhelming. For

this reason accurate and stable algorithms need to be devised.

When using standard finite element schemes, a common approach in the hydrological community, a

number of drawbacks and inaccuracies arise, in particular in the calculation of velocities when unstructured
grids are employed [11]. On the other hands, block centered finite differences or finite volumes can be shown

to be equivalent to the mixed finite element approach on regular meshes [12]. In this paper, we describe the

development of a three-dimensional numerical scheme based on the mixed hybrid finite element (MHFE)

method for the discretization of the flow equation and a combination of MHFE with high resolution finite

volumes (HRFV) via a time-splitting technique [13,14] for the discretization of the transport equation. This

procedure has been shown to be an effective tool for the solution of the coupled flow and transport problem

in two dimensions [15,9,16]. It has been applied to Elder�s problem, showing its accuracy and reliability

without suffering from numerical oscillations but still introducing only a minimum amount of numerical
diffusion. The two-dimensional version of this approach was used in [9] to solve the salt lake problem, intro-

duced by [17] as a test case for density-dependent groundwater flow and solute transport. Moreover, it has

been applied for high-concentration brine transport [16] following the nonlinear dispersion law proposed by

[18,19]. The reasons for the success of this approach are twofold. First the MHFE scheme applied to the

flow equation yields a discrete velocity field with normal components that are continuous across interele-

ment boundaries. This property guarantees that no mass balance errors due to numerical inaccuracies in the

flow discretization are introduced in the solution of the transport equation. The second reason is related to

the HRFV method used in the approximation of the convective fluxes. This technique is capable of captur-
ing sharp fronts and to accurately follow their dynamics, a characteristic of fundamental importance for

density driven flows.

The full transport equation is solved by means of a time-splitting approach that combines the MHFE

discretizing the dispersion fluxes and HRFV for the convective fluxes. Since integration in time is explicit

for HRFV, thus requiring time step size restrictions according to the CFL constraint, and implicit for

MHFE, different time steps are allowed for advection and dispersion. It has been observed that some sim-

ulation runs require very long computing times, due to the extremely small advective time steps resulting

from the presence of large velocities combined with small cell sizes in only small parts of the domain. This
phenomenon suggests the use of space variable time step sizes for the time-splitting technique. A similar

procedure was described and analyzed in [20] on two-dimensional rectangular meshes. In this paper, we

describe how such a technique can be effectively implemented in a three-dimensional solver to achieve high

computational performance.

When extending the time-splitting technique to three dimensions, particular attention has to be devoted

to the choice of a truly three-dimensional limiter for the advection equation. Interpolation on uniform or

rectangular meshes does not pose serious problems in the reconstruction phase. On the other hand, when

working on unstructured tetrahedral meshes, it is difficult to maintain high accuracy for all cell
configurations [21]. For this reason we perform a numerical comparison of the behavior of several recon-

struction-limiter combinations using a simple linear advection equation. Verification of the achievement of

superlinear global convergence (close to second order) is studied by solving simple multiple dimensional
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linear advection equations. Indeed, several generalization of two-dimensional HRFV schemes do not pre-

serve spatial second order of accuracy due to the poorly structured tetrahedra that need to be used in a

three-dimensional mesh; on the contrary, other schemes seem to be well suited for application to tetrahedra

[22]. The reconstruction chosen for the FV scheme is based on the limiter proposed by [21]. As usual, when

dealing with finite volume methods, there is the choice of working with cell or node based schemes [23]. We
use the former approach because of the need of preserving compatibility with the MHFE approach used to

discretize dispersion. Thus we consider here three-dimensional extensions of the reconstruction-limiter cou-

ples proposed in [24–27,21]. Our aim is to maintain simplicity and robustness in the overall scheme, and for

this reason we do not consider in this work the class of diamond schemes as proposed in [28] and analyzed

in [29]. Also ENO type schemes [30,31] are not investigated in this paper as the use of a variable stencil

complicates the coupling with MHFE.

The extended procedure for the numerical solution of coupled flow and transport problems is tested on

the three-dimensional Elder problem [32] and on the saltpool problem, a three-dimensional benchmark test
introduced recently by [7,10]. Both test cases are useful to describe the performance of the proposed ap-

proach and to discuss some challenging issues related to density-dependent flow in porous media.
2. Governing equations

The mathematical model of density-dependent flow and transport in groundwater [33] can be expressed

in terms of an equivalent freshwater head h defined as h = w + z, where w = p/(q0g) is the equivalent fresh-
water pressure head, p is the pressure, q0 is the freshwater density, g is the gravitational constant, and z is

the vertical coordinate directed upward. The density q of the saltwater solution is written in terms of the

reference density q0 and the normalized (actual divided by maximum) salt concentration c:
q ¼ q0ð1þ �cÞ; ð1Þ

where � = (qs � q0)/q0 is the density ratio and qs is the density of the solution at c = 1. The dynamic viscos-

ity l of the saltwater mixture is also expressed as a function of c and of the reference viscosity l0 as
l ¼ l0ð1þ �0cÞ; ð2Þ

where � 0 = (ls � l0)/l0 is the viscosity ratio and ls is the viscosity of the solution at c = 1.

With the above definitions, the mass conservation equations for the coupled flow and transport model in

porous media can be written as [4]:
r
ow
ot

¼ r
!
� Ks

1þ �c
1þ �0c

ðr
!
wþ ð1þ �cÞ~gzÞ

� �
� /�

oc
ot

þ q
q0

q� þ q; ð3Þ

~v ¼ �Ks
1þ �c
1þ �0c

ðr
!
wþ ð1þ �cÞ~gzÞ; ð4Þ

/
oc
ot

¼ r
!
�ðDr

!
cÞ � r

!
�ðc~vÞ þ qc� þ f ; ð5Þ
where t is time, r = Ss(1 + �c) is the general storage term, Ss is the storage coefficient,r
!
is the gradient oper-

ator, Ks is the hydraulic conductivity tensor at the reference density defined as Ks = q0gk/l0 with k the

intrinsic permeability, ~gz is a vector equal to zero in its x and y components and 1 in its z component, /
is the porosity of the medium, q* is the injected and q the extracted volumetric flow rate, ~v is the Darcy
velocity vector, D is the dispersion tensor, given by [33] as D ¼ ð/D0 þ aTj~vjÞI þ ðaL � aTÞ~v �~vT=j~vj, with
D0 the molecular diffusion coefficient and aL and aT the longitudinal and transverse dispersivities, c* is
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the normalized concentration of salt in the injected/extracted fluid, and f is the volumetric rate of injected

(positive)/extracted (negative) solute that does not affect the velocity field. Appropriate initial and Dirichlet,

Neumann, or Cauchy boundary conditions are added to complete the mathematical formulation of the flow

and transport problem.

Note that, if we neglect molecular diffusion, the dispersion tensor D represents the effects of contam-
inant mixing due to the pore-scale heterogeneity of the local velocity field. Mathematically, it is equiva-

lent to a diffusion term and thus multiplies the concentration gradient in the mass balance equation (5)

[33,34].
3. Numerical discretization

The numerical approach used to solve the coupled flow and transport equation extends to three dimen-
sions the procedure successfully applied in two dimensions [9,16]. The aim is to obtain accurate and mono-

tone solutions in both velocity and concentration fields, also when the transport equation is advection

dominated. For this reason the flow equation is discretized by means of a MHFE approach that yields

the best compromise between accuracy and performance. The algorithm employed in this work is a

three-dimensional extension of the scheme described in [13,35], and uses the RT0 functional spaces defined

on tetrahedra.

The transport equation is first split into a dispersion and an advection equations. These are then discret-

ized by implicit MHFE and explicit cell-centered Godunov-like finite volume schemes, respectively. The
two discretizations are combined together via an appropriate time-splitting technique [13] that achieves

second order accuracy if the time-step size used in the dispersion step is the same as the one used in the

advection step [14]. The time-splitting approach employed here has been thoroughly discussed in its two-

dimensional version in [13–15] and successfully applied to density-dependent porous media flow in

[9,16]. Extensions to tetrahedra are reported in [36].

The solution of the nonlinear system of equations arising from the discretization of the flow and trans-

port equations is addressed with an iterative Picard-like scheme as described in [9] by which the problem is

decoupled by first solving the flow equation, then calculating the velocity field, and finally solving the trans-
port equation. This three-step sequence is repeated until convergence.

Application of the MHFE to three-dimensional triangulations is just a straightforward extension of the

two-dimensional case. For details about the implementation see [35], and this holds true for both the flow

equation and the dispersion term in the transport equation. Implementation of the finite volume approach

to unstructured tetrahedral meshes possess higher difficulties in the reconstruction phase but most impor-

tantly in the definition of an appropriate fully three-dimensional limiter. For this reason in the following we

refer to the literature for the MHFE, e.g. [37], while we report a more detailed discussion on the choices

made for the Godunov-like finite volume scheme.
Let Th be a triangulation of the domain X 2 R3 and let Tl be a generic cell (tetrahedron) of Th. Recall

that, since / is constant in time, Eq. (5), over the time interval [tk,tk + 1] with time step Dt, may be written in

semi-discrete form as:
/lc
kþ1
l ¼ /lc

k
l �

Dt
jT lj

Z
T l

½r
!
�ð~F ðckþ1�hÞ þ ~GðckþhÞÞ � f kþh� dD; l ¼ 1; . . . ;m ð6Þ
where /l is the value of porosity in the centroid of Tl, k is the time step index, ckl is the volume average over
Tl with |Tl| being the volume of Tl, ~F ¼ c~v is the advective flux, ~G ¼ �Dr

!
c is the dispersive flux and f k + h

contains the terms qc* and f. A weighted scheme is used for the time quadrature with weighting parameter

h 2 [0.5,1]. Integration in time is explicit for the HRFV scheme and implicit for the MHFE method. We
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combine explicit and implicit first order Euler scheme (h = 1) or explicit and implicit second order mid-

point rule (h = 0.5).
3.1. The finite volume approach on tetrahedra

The advection equation extracted from (6) can be explicitly written as:
/lc
kþ1
l ¼ /lc

k
l �

Dt
jT lj

Z
T l

r
!
�~F ðckþ1�h

l Þ dD ð7Þ
with l = 1, . . .,m.

Two-dimensional finite volume scheme on unstructured triangular grid, as developed by [24] and then

modified by [38], can be theoretically generalized to tetrahedra. In practice, we observe that direct extension
of many two-dimensional limiters may drastically reduce the order of accuracy and yield poor results. The

reason for this behavior is mainly attributed to interpolation errors that arise in the presence of poorly

structured tetrahedra that generally form a three-dimensional triangulation [22,36]. More in detail, appli-

cation of the divergence theorem to the right-hand side of (7) yields
/lc
kþ1
l ¼ /lc

k
l �

Dt
jT lj

X4

j¼1

Z
elj

~F ðckþ1�h
l Þ �~nlj dC; ð8Þ
where elj, j = 1,2,3,4 are the faces of tetrahedron Tl and~nlj are the corresponding (outward) unit normals.

The approximation of the four integrals (advective fluxes) in the above equation is achieved by introducing

the numerical flux HG
lj :
/lc
kþ1
l ¼ /lc

k
l �

Dt
jT lj

X4

j¼1

HG
lj ; ð9Þ
where HG
lj is the two-point Lipschitz monotone flux (the Godunov flux) that depends on the cell averaged

values of the concentration variable evaluated on the right and left sides of face elj, j = 1, . . ., 4 at time

tk + 1 � h (for clarity we omit when unnecessary the time index k). The flux HG
lj can be defined as:
HG
lj ¼ HðcRj; cLj; nljÞ�T lj; ð10Þ
where cRj and cLj are the reconstructed values c on the right and left sides of face elj of Tl, and �T lj is the

surface area of face elj.

To obtain second order approximation in space, cRj and cLj are linearly reconstructed component-wise
from the cell averaged data:
cXj ¼ cl þ~rlj � r
!
ðLlÞ

h i
X
; X ¼ R;L; ð11Þ
where~rlj is the vector from the centroid of cell Tl to the centroid of the face elj andr
!
ðLlÞ is the gradient of a

linear polynomial Ll defined on Tl. A second order accurate method is thus achieved in the sense that a

linear solution is modeled exactly, but overshoots and undershoots at the centroids of the tetrahedra faces
may be introduced. Non-linear correction factors called �limiters� are employed to avoid these oscillations

and to satisfy a local maximum principle. These limiters must be designed so that global second order accu-

racy is not destroyed, i.e., they have to add corrections to the interpolation (11) that act only locally in the

presence of sharp gradient changes or local extrema. As we will see, a careful definition of this limiting func-

tion is crucial to achieve the full potential of the method.
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3.2. Three-dimensional reconstruction and limiting

In this section, we describe several three-dimensional reconstructions and corresponding limiters that are

applicable to tetrahedral meshes. Some are extensions of two-dimensional techniques, others have been

proposed expressively for tetrahedra.

3.2.1. The DUR approach

The three-dimensional extension of the scheme developed by [24], denoted from now on as the DUR

approach, can be obtained as follows. In each tetrahedron, four hyperplanes, Lj
l, j = 1,2,3,4, can be con-

structed by interpolating the concentration values at the centroid ~P l of the reference tetrahedron and the

centroides ~Pp; ~Pq; ~P r; ~P s of its four neighbors, Tp, Tq, Tr, Ts. If a face ei of Tl is a boundary face, we

use ð~Pli; cð~P li; tÞÞ instead of ð~Pp; cpÞ to build the linear interpolation, where ~P li is the centroid of face ei.

Next, we compute the Euclidean norm of the gradient of each Lj
l:
j r
!
ðLj

lÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oLj

l

ox

� �2

þ oLj
l

oy

� �2

þ oLj
l

oz

� �2
s

j ¼ 1; 2; 3; 4:
Starting form the Lj
l with maximum gradient and going toward the Lj

l with minimum gradient, we choose

the first j that satisfies:
Lj
lð~P lpÞis between cl and cp;

Lj
lð~P lqÞis between cl and cq;

Lj
lð~P lrÞis between cl and cr;

Lj
lð~P lsÞis between cl and cs;

ð12Þ
where ~P lp is the centroid of the face sharing Tl and Tp tetrahedron, and so on. If no Lj
l satisfies the require-

ments (12), we choose Ll = cl, that is first order reconstruction.

From a theoretical point of view, the properties of DUR in two dimensions should be readily generalized

to tetrahedra. In practice, the extension of the limiter to three dimensions may reduce the observed order of

accuracy. The great computational effort needed to choose the right interpolant for the linear reconstruc-

tion does not correspond to an improvement in terms of accuracy of the solution. Even if it has been noted
that the use of linear reconstructions does not always imply second or higher order accuracy also when the

solution is smooth [21], such failure requires more investigation. Indeed, a similar behavior is observed also

for other two-dimensional schemes extended to tetrahedra [25,26,30].

3.2.2. The MIN approach

Themin limiter (MIN) is discussed in [24] as a procedure analogous to themin limiter in second order ENO

(essentially non-oscillatory) schemes [30]. It corresponds to the selection of the interpolant withminimum gra-

dient, among the fourDUR candidates. At the extrema, that is when concentration is an extremum relative to
the values of c at the centroids of the neighboring tetrahedra, a first order approximation is used.
3.2.3. The LCD approach

The limited central difference (LCD) scheme is presented in [25] for unstructured triangular meshes. Its

extension to three dimensions is obtained by constructing the plane that interpolates concentration values

at the centroids of the four neighboring elements. Limiting is performed as follows. Let L5
l be the interpo-

lant of the four pairs of points and corresponding concentration values
ð~Pp; cpÞð~Pq; cqÞð~P r; crÞð~P s; csÞ:
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The LCD scheme limits L5
l by setting
av ¼

maxðcv�cl;0Þ
~rlv�r

!
ðL5l Þ

if ~rlv � r
!
ðL5

l Þ > maxðcv � cl; 0Þ;

minðcv�cl;0Þ
~rlv�r

!
ðL5l Þ

if ~rlv � r
!
ðL5

l Þ < minðcv � cl; 0Þ;

1 otherwise;

8>>>><
>>>>:

v ¼ p; q; r; s;
where~rlv is the vector from the centroid of Tl to the centroid of the face between cells Tl and Tv. The LCD

gradient operator is then calculated as
Ll ¼ aL5
l ¼ min

v¼p;q;r;s
avL5

l :
3.2.4. The MLG approach

The maximum limited gradient (MLG) scheme is proposed in [26] and can be described as a combination

of the methodologies proposed for the DUR and LCD schemes. It takes all five linear interpolants (the can-

didates for the reconstruction of the DUR and the LCD), limits each one in turn in the manner of the LCD
scheme and chooses the remaining operator with largest gradient.

3.2.5. The LSM approach

The above methods, applied in three dimensions, appear inadequate to achieve full accuracy. On the

contrary, other schemes seem to be better suited to be applied on tetrahedra. The linear interpolant is

the least squares approximation of the centroid values of the reference tetrahedron and its four neighbors.

The procedure is less expensive than the methods that require the definition of four or more linear inter-

polants, and, at the same time, takes into account the full information available in the reference tetrahedron
and its neighbors.

The least square method minimizes the functional
SðLlÞ ¼
X

v2fl;p;q;r;sg
ðLlð~PvÞ � cvÞ2; ð13Þ
where l and p, q, r, s represent the tetrahedron and its four neighbors, respectively. The gradient r
!
ðLlÞ is

then the slope of the resulting hyperplane.

The extremum limiter (LSM_EXTR) does not limit the gradients but directly the values of the variables

on both sides of the face. It can be formulated [27] as:
U ¼
0 if minðcl; cvÞ 6 coldlv 6 maxðcl; cvÞ;
maxðcl; cvÞ � coldlv if coldlv > maxðcl; cvÞ;
minðcl; cvÞ � coldlv if coldlv < minðcl; cvÞ:

8><
>:
The limited value of clv is given by:
clv ¼ coldlv þ U; v ¼ p; q; r; s;
where
coldlv ¼ cl þ~rlv � r
!
ðLlÞ; v ¼ p; q; r; s: ð14Þ
The last method in this comparison, the LSM_BJ method, applies the slope limiter by computing [21]
clv ¼ cl þ Ul~rlv � r
!
ðLlÞ; v ¼ p; q; r; s; ð15Þ
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where Ul = min(Ulp, Ulq, Ulr, Uls) and
Ulv ¼

1 if coldlv � cl ¼ 0;

min 1;
ðcmax

l �clÞ
ðcoldlv �clÞ

� �
if coldlv � cl > 0;

max 1;
ðcminl �clÞ
ðcoldlv �clÞ

� �
if coldlv � cl < 0:

8>>><
>>>:

ð16Þ
In the previous formula, cmin
l ¼ minðcl;min4

vcvÞ and cmax
l ¼ maxðcl;maxvcvÞ. The application of this slope

limiter guarantees that a local maximum principle condition is satisfied [21].

3.3. Numerical comparison of the different reconstruction-limiter combinations

The choice of the most appropriate reconstruction-limiter combination is based mainly on accuracy and

convergence properties of the overall algorithm. Numerical assessment of these characteristics is performed

by solving in one and two spatial dimensions the advection equation whose exact solutions are x � vxt

(TEST1A), sin2p(x � vxt) (TEST1B), and sin2p(x � vxt)sin2p(y � vyt) (TEST2). Appropriate Dirichlet

boundary conditions and velocity equal to ~v ¼ ð1; 0; 0Þ for the one-dimensional tests and to ~v ¼ ð1; 1; 0Þ
for the two-dimensional example are imposed.

Numerical convergence of the different FV schemes is evaluated by calculating L2 relative errors at dif-

ferent grid levels (|e‘,2|) and evaluating the rates of convergence at each level. Three different grid levels are

considered and obtained by uniformly subdividing the domain in triangular prisms that are further subdi-

vided into three tetrahedra, thus ensuring that no obtuse angles are generated. For the one-dimensional

problems we consider the domain [0,1] · [0, 0.1] · [0, 0.1]. The coarsest mesh has 480 tetrahedra and the fin-
est 30,720 tetrahedra. For the two-dimensional test the domain is [0, 1] · [0, 1] · [0,1] and the coarsest mesh

has 3072 tetrahedra while the finest one is formed by 196,608 tetrahedra. A time step Dt = 1 · 10�3 s is used

at the coarsest mesh of the one-dimensional tests and halved in passing to the next finer level. The CFL is

kept constant at 0.29. In the two-dimensional example the time step is Dt = 4 · 10�3 s at the coarsest mesh

(and halved in passing to the next finer level), and the CFL is equal to 0.33.

Table 1 shows the results obtained for the three tests relative to a final time tk = 0. s. The performance of

the particular limiter is measured by the loss of accuracy observed with respect to the run where the limiter

is not activated, reported in the same table for the LCD and LSM reconstructions, and named NLCD and
NL_LSM, respectively. The scheme with the flux approximation calculated as the average of the four DUR

candidates is also reported (AVG). Fig. 1 reports the convergence behavior of the various schemes for

TEST2 in a log–log plot of the L2 error vs. the mesh size. For comparison purposes the first and second

order lines are reported.

The results show that DUR, MIN, LCD, and MLG achieve only first order accuracy, except for a few

one-dimensional tests. LSM_EXTR achieves second order accuracy in TEST1A but reaches about 1.40

convergence rate for TEST2. LSM_BJ, together with AVG, achieves a rate approaching 1.80, the highest

order across the different sample cases. Second order is always reached when no limiter is applied. The
numerical results suggest that the extension to three dimensions of limiters that work satisfactorily in

two-dimensions is not as straightforward as suggested by many authors. The LSM_BJ scheme appears

to be the most robust among those considered in the simulations and it will be used in the present work.
3.4. The spatially variable time-splitting technique

Stability of the advection discretization is determined by the CFL constraint, while the dispersive step,

being implicit, is not subject to stability restrictions. This allows for the use of different time steps sizes for
advection (Dta) and dispersion (Dtd). A finer advection time step together with a coarser dispersive time step



Table 1

Convergence behavior of the different finite volume schemes in the solution of purely advective sample tests

Method ‘ TEST1A TEST1B TEST2

|e‘,2| Rate |e‘,2| Rate |e‘,2| Rate

DUR 1 9.50e � 3 3.84e � 2 1.29e � 1

2 5.09e � 3 0.90 1.90e � 2 1.01 6.56e � 2 0.97

3 2.62e � 3 0.96 9.57e � 3 0.99 3.49e � 2 0.91

MIN 1 3.45e � 3 1.37e � 2 8.58e � 2

2 7.98e � 4 2.11 4.35e � 3 1.65 3.48e � 2 1.30

3 2.06e � 4 1.95 1.27e � 3 1.78 2.03e � 2 0.78

AVG 1 3.90e � 3 1.16e � 2 7.38e � 2

2 1.01e � 3 1.95 3.51e � 3 1.72 2.42e � 2 1.61

3 2.60e � 4 1.96 9.76e � 4 1.85 6.69e � 3 1.85

LCD 1 8.05e � 3 3.96e � 2 1.18e � 1

2 4.91e � 3 0.71 1.91e � 2 1.05 5.67e � 2 1.06

3 2.61e � 3 0.91 9.45e � 3 1.01 2.70e � 2 1.07

NLCD 1 3.77e � 3 1.12e � 2 7.33e � 2

2 9.83e � 4 1.94 3.33e � 3 1.75 2.42e � 2 1.60

3 2.50e � 4 1.97 9.17e � 4 1.86 6.67e � 3 1.86

MLG 1 1.11e � 2 3.61e � 2 1.10e � 1

2 5.20e � 3 1.09 1.74e � 2 1.05 5.28e � 2 1.06

3 2.61e � 3 0.99 8.79e � 3 0.98 2.74e � 2 0.95

LSM_EXTR 1 4.14e � 3 1.28e � 2 8.60e � 2

2 1.03e � 3 2.01 3.66e � 3 1.81 3.31e � 2 1.38

3 2.57e � 4 2.00 1.00e � 3 1.87 1.24e � 2 1.42

LSM_BJ 1 3.96e � 3 1.24e � 2 7.12e � 2

2 1.01e � 3 1.97 3.60e � 3 1.78 2.49e � 2 1.51

3 2.55e � 4 1.98 1.00e � 3 1.85 7.24e � 3 1.78

NL_LSM 1 3.72e � 3 1.11e � 2 7.32e � 2

2 9.74e � 4 1.93 3.28e � 3 1.76 2.42e � 2 1.60

3 2.46e � 4 1.98 9.02e � 4 1.86 6.67e � 3 1.86
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(Dtd = naDta, with na integer P1) maintains the stability of the overall scheme if Dta is selected so that

CFL < 1. The integer na is determined by accuracy considerations. This approach yields considerable

CPU savings, if compared to the case with Dtd = Dta, but introduces an error of the order of Dta, forcing
the algorithm to become first order accurate [13]. Obviously, the desired accuracy can always be achieved

by proper selection of na.

When dealing with spatially variable coefficients, a very small Dta is often forced by large velocities

occurring on only a small portion of the domain. This suggests that a spatially variable time step size

may accelerate the algorithm considerably [20]. For an easier description of such approach in this case,
we consider, as an example, a domain X subdivided into two zones, X1 and X2, separated by an interface

C12. Let Dtai denote the advective time step in zone i, i = 1,2. The value of Dta1 is calculated to satisfy the

CFL condition as if no spatially variable time steps were adopted, Dta1 ¼ Dta, while Dta2 ¼ La1Dta1 for some

positive integer La1 . The diffusive time step is set to Dtd ¼ naDta2 for some positive integer na. Subdomain X1

consists of those tetrahedra in which the CFL constraint yields a time step smaller than Dta2 , while subdo-
main X2 contains the remaining cells. From a practical point of view, the integer La1 is chosen in such a way
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Fig. 1. Advection example: L2 error vs spacing between adjacent nodes of the different meshes.
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that approximately 80% or 90% of cells are located in X2, thus attaining a considerable acceleration of the

algorithm. The advection step proceeds by first applying the HRFV scheme within X1 for La1 steps up to

time tk þ Dta2 . For the tetrahedra belonging to X1 and having a face on C12, the advective flux on the bound-

ary C12 is calculated by using the current solution in X2. At time tk þ Dta2 , one advection step is performed

in X2 using the solution just calculated in the boundary elements of X1. This terminates one full advection

step over the entire domain X. The procedure above is then repeated na times until tk + 1 is reached. Next,

the dispersion step is carried out, obtaining the new solution ck + 1.

This procedure is easily generalized toNz > 2 zones, as described in the following algorithm, where F̂ and
Ĝ denote the advective and dispersive numerical fluxes, respectively:

Algorithm 1 (Time-splitting technique with spatially variable Dtai ). For each time step,

(X ¼
SNz

i¼1Xi; LaiDtai ¼ Dtaiþ1
; LaNz

¼ 1, and Dtd ¼ naDtaNz
; i ¼ 1; . . . ;Nz) do:

� advection step:

(1) /lc
ð0Þ
l :¼ /lc

k
l

(2) DO ia = 0,na � 1

I. DO Xi, i = 1,Nz

a. /lc
ð0Þ
l :¼ /lc

ðiaÞ
l

b. SET nai ¼ Lai � Laiþ1
� � � LaNz

c. DO j ¼ 0; nai � 1
/lc
ðjþ1Þ
l ¼ /lc

ðjÞ
l þ Dtai F̂ ðcðjþ1�hÞ

l Þ
h i

ð17Þ
END DO
d. cðiaþ1Þ
l :¼ c

ðnai Þ
l

END DO

END DO

(3) ĉkþ1
l :¼ cðnaÞl



� dispersion step:
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Dtd ¼ Dt ¼ naDtNz

/lc
kþ1
l ¼ /lĉ

kþ1
l þ Dtd Ĝðckþh

l Þ
� 	

: ð18Þ
Continuity requires that, at the interfaces between different subregions, the concentration values in step (2d)

of Algorithm 1 be calculated as:
Dtaiþ1
F̂ ðcnail Þ ¼

Xnai�1

j¼0

Dtai F̂ ðc
ðjþ1�hÞ
l Þ
so that global mass conservation in the sense of Eq. (7) is ensured [20].
4. Numerical results

In this section, we present and discuss a few numerical results obtained by the coupled flow and trans-

port solver previously described. In all the simulations we use h = 1 and na > 1 together with a spatially var-

iable advective time step. Other parameters of choice in the numerical scheme are reported in summary

tables for each test case.

The initial guess of the Picard iteration is given by the extrapolated value:
ðwl; clÞ
kþ1;0 ¼ ðwl; clÞ

kþ1;0 þ m
ðtkþ1 � tkÞ
ðtk � tk�1Þ ðwl; clÞ

k � ðwl; clÞ
k�1

h i
;

where m 2 [0, 1]. Convergence of the iteration is achieved when
kwkþ1;rþ1 � wkþ1;rk2 6 sw;

kckþ1;rþ1 � ckþ1;rk2 6 sc;
where sw and sc are two predefined tolerances. In case of non convergence, the time step is repeated with a

smaller time step size using an empirical algorithm already tested in several problems [16,39]. Because of the

linear convergence of Picard, the use of this technique ensures that the time step size is always maintained

so that time accuracy is always better than the accuracy of the nonlinear system solution. Given Dtd as se-
lected by this procedure, the value of na is chosen so that the sought CFL constraint is satisfied in each of

the regions Xi. In general, the number of subdomains is kept small as the distribution of CFL values is gen-
erally concentrated in only few regions. In our simulations a maximum of two subdomains has been used.
4.1. Elder�s problem

The two-dimensional Elder problem has been used as a benchmark test case for two-dimensional den-

sity-dependent codes [1] and was extended to three spatial dimensions in [32]. The problem considers a free

convection phenomenon, where the bulk fluid flow is driven purely by fluid density differences. The three-

dimensional counterpart consists of a porous box with a square base of side 600 m and height 150 m. The
box has the same cross-sections along the Cartesian axes as defined for the two-dimensional sketch (see Fig.

2). Salinity is held constant, in an areal extent, on the top and bottom of the porous box. The other param-

eters are given in Table 2.



300 m

600 m

150 m

c=1.0

c =0.0

ψ = 0.0 ψ = 0.0

Fig. 2. Definition of Elder�s problem as given in [1].

Table 2

Parameters for Elder�s problem

Domain Box with base 600 m · 600 m and height 150 m

Source location Centered on the upper bound

at z = 150 m

at 150 m 6 x 6 450 m

at 150 m 6 y 6 450 m

k 4.845e � 13 m2

l0 86.4 kg/md

q0 1000 kg/m3

� 0.2

� 0 0

/ 0.1

aL, aT 0 m

D0 0.308016 m2/d

Ksx 0.410654 m/d

Ksy 0.410654 m/d

Ksz 0.410654 m/d

Ss 9.8e � 3
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The domain is discretized with a tetrahedral grid of 192,000 elements obtained by uniform subdivision of
the domain in triangular prisms that are further subdivided into tetrahedra. A summary description of the

grid and convergence parameters used is given in Table 3. The observed CFL number, with an imposed

maximum value of 0.30, varies between 0.10 and 0.30.

The three-dimensional free convection process is similar to the two-dimensional counterpart, with some

interesting new features. In the two-dimensional process, the solute enters the pure water initially by diffu-

sion, increases its density, and a circulation process begins. The motion develops as a set of eddies forming,

because of the solute density differences, at the two ends of the source. Small eddies of reverse circulation

are associated with the end eddies, followed by a further set of eddies growing near the ends. This process
continues in time until the end eddies merge into single large eddies.

Similar to the two-dimensional case, in three dimensions an up-welling salinity pattern can be found in

the center of the box at later times. Fingers appear around the border of the intrusion area and �blobs� grow
down at the four corners. The quadratic pattern evolves into more complicated multicellular formations via

a number of characteristic stages. More blobs appear until the salinity reaches the bottom. Then the struc-

tures begin to fuse and the pattern is completely reformed. At this point, a convection pattern with a char-

acteristic diagonal �star� forms as a result of the geometry of the square intrusion area. It is clear that the



Table 3

Elder�s problem

BCs for flow No flow

Zero pressure head at the two upper corners

BCs for mass transport c = 0 along the base and

c = 1 at the source

Zero concentration gradient elsewhere

IC for pressure head Hydrostatic

IC for concentration c = 0

Grid characteristics 192,000 tetrahedra, 390,400 faces

Nodal spacing

Dx 15 m

Dy 15 m

Dz 7.5 m

Final time Tmax 7300 d

Dt0 30 d

Dtmin 10 d

Dtmax 30 d

maxit1 10

maxit2 12

maxit 15

Convergence criteria: sw, sc = 1.e � 6

Boundary (BC) and initial (IC) conditions. Grid characteristics. Convergence parameters.
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final formations have a strong dependency on geometry [8]. The three-dimensional configuration after 2

and 4 years is shown in Fig. 3, where the fingers and the convective cells are clearly visible. Fig. 4 shows

two horizontal sections at an elevation of 135 and 75 m for t = 2, 4 and 20 years. The computed salinity

patterns agree well with the results obtained in the literature [8,32].
Fig. 3. Three-dimensional view of the 0.1 and 0.3 isosurfaces at times 2 (top) and 4 (bottom) years. The domain is cut at the middle of

the x axis to emphasize the convective cells forming in the interior.



Fig. 4. Computed salinity pattern of the Elder problem at times 2 (top), 4 (middle) and 20 (bottom) years: horizontal views at an

elevation of 135 m (left) and 75 m (right).
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4.2. The saltpool problem

The saltpool problem has been proposed by [7] who describe a series of laboratory experiments that can

be used as three-dimensional tests for benchmarking density driven porous media flow simulators. The
experiments involve a cube (shown in Fig. 5) in which saltwater initially forms a bottom layer overlain

by freshwater. A flow pattern is initiated by injecting a constant rate q of freshwater from one top corner

and letting water out from the opposite corner. The flow pattern causes a time-dependent upconing of the

saltwater due to lateral dispersion of the salty layer into the moving fresh water. Variation of the density

difference between saltwater and freshwater is shown to have a significant influence on the flow pattern be-

cause of gravity effects.

An important outcome of the laboratory experiments is the breakthrough curves of salinity at the out-

flow hole. It is a challenging task to model these breakthrough behavior. Two different cases are studied
with a maximum initial salt mass fraction x (defined as the salt concentration c divided by the fluid density)

of xmax = 1% (low density, case 1) and xmax = 10% (high density, case 2), respectively.



freshwater

m 41.0
m 60.0

0.2 m

m 2.0

saltwater

outflow

inflow

Fig. 5. Definition of the saltpool problem.
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The saltpool problem has been modeled by various authors, see e.g. [10], with different success. The

numerical investigation is complicated due to the extremely small values of the dispersivity coefficients

and a large density contrast. The best agreements with the measurements have been achieved by [10],

who have fitted some of the parameters to obtain an ‘‘optimal’’ numerical solution, in the sense of mini-

mum differences between calculated and experimental breakthrough curves. They studied mesh conver-
gence by using a hierarchy of regular hexahedral meshes up to eight grid levels. At the finest grid level,

the total number of hexahedra is about 17 million. It was shown that extremely fine meshes are required

to model test case 2 with sufficient accuracy.

In this example we reproduce the results of [10], whose adjusted parameters are summarized in Table 4.

The initial condition for the salt concentration is expressed in terms of the salt mass fraction x by a piece-

wise linear function defined as:
Table

Param

Doma

k

l0
q0
�

� 0

/
aL
aT
D0

Ksx

Ksy

Ksz

Ss
4

eters for the saltpool problem

in Case 1 Case 2

Box of 0.2 · 0.2 · 0.2 m

11.94e � 10 m2

1.002e � 3 kg/ms

1000 kg/m3

0.0076 0.0735

0.018 0.1909

0.358

1.2e � 3

4.32e � 5

10�10 m2/s

0.011669 m/s

0.011669 m/s

0.011669 m/s

0



Table

Saltpo

BCs fo

At the

At the

IC for

IC for

xmax

Vm

t
Final t

Dt0
Dtmin

Dtmax

maxit1
maxit2
maxit

Conve

Bound

Table

Saltpo

Grid

1

2

Grid c
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xð~x; 0Þ ¼ xmax

1 if z 6 zm � t=2;

1=2� ðz� zmÞ=t if zm � t=2 6 z 6 zm þ t=2;

0 if zm þ t=2 6 z;

8><
>: ð19Þ
where zm = Vm//L denotes the vertical position of the initial mixing zone (Vm being the volume of saltwater

recharged at the beginning of the experiment and L the length of the box), assuming a perfect horizontal

interface between saltwater and freshwater, and t is the width of the transition zone. Both parameters de-
pend on the experiment. The inflow and outflow holes are at a constant rate qN. Boundary conditions and

other parameters pertaining to the numerical scheme are reported in Table 5.

In the simulations, the proposed approach with a spatially variable advective time step is used. More in

detail, two subdomains, X1 and X2, have been identified in such a way that approximately 90% of the com-

putational cells are located in X2, where a relatively small na can be used, while the remaining ones are lo-

cated in X1, where the CFL condition forces a large value of na1 . For example, in the simulation of case 1

over a grid with 24,576 tetrahedra and with a diffusive time step Dtd = 17.525 s, imposing that CFL=1 we

obtain na = 4, na1 ¼ 138 and the number of tetrahedra belonging to X1 is equal to 1562. This means that 138
advective time steps are run on 1562 cells, followed by 1 advective time step on the remaining 23,014 cells.

This procedure is repeated 4 times, and finally a dispersion step is taken. If no spatially variable advective

time step was considered, 138 · 4 (that is 552) advective time steps should have been performed over all the

24,576 cells which would have been more than 14 times more expensive.

We consider two grid levels, corresponding to levels 4 and 5 on the hierarchy created in [10], and whose

characteristics are described in Table 6. Simulations on finer grids would require parallelization of the code.
5

ol problem

Case 1 Case 2

r flow

inflow hole qN = 1.89e � 6 m3/s qN = 1.83e � 6 m3/s

outflow hole qN = � 1.89e � 6 m3/s qN = � 1.83e � 6 m3/s

pressure head w = 0

concentration c = x/q (see Eq. (19))

1% 10%

8.64e � 4 m3 8.9964 e � 4 m3

8e � 3 m

ime Tmax 8412 s 9594 s

17.525 s 4 s

10 s 4 s

17.525 s 9.9938 s

7 5

10 7

12 10

rgence criteria sw,sc = 1.e � 3

ary (BC) and Initial (IC) Conditions. Convergence parameters.

6

ol problem

Tetrahedra Faces Dx Dy Dz

24,576 50,688 0.0125 m 0.0125 m 0.0125 m

196,608 399,360 0.00625 m 0.00625 m 0.00625 m

haracteristics.



170 A. Mazzia, M. Putti / Journal of Computational Physics 208 (2005) 154–174
The results for the low (case 1) and high (case 2) density tests are presented in Figs. 6 and 7. A good approx-

imation of the breakthrough curve for case 1 is obtained on the finest grid level 2. For the second test case a

much finer grid would be necessary to achieve good accuracy. Nonetheless, the results obtained by means of

the present approach are much closer to the experimental ones with respect to the corresponding curves

obtained by [10]. In particular, the differences between the two numerical approaches are small at later
times (after 4000 s) while between 0 and 4000 s the present results displays a better agreement to the

measurements.

From the results of these simulations we can observe the following.

Remark 1. The choice of the appropriate discretization for advection is of great importance in this test
case. Indeed, as it can be seen from Fig. 8, the extremum limiter seems to work satisfactorily in case 1 but

gives disastrous results in case 2, as compared to the BJ limiter. The reason for this behavior can be

explained by noting that the latter is less compressive, and thus better suited for linear advection–diffusion

equations. This results in a more robust solution to small variations of the transversal dispersivity

coefficient aL, the parameter controlling diffusion of the saltwater into the moving freshwater layer. A

limiter such as LSM_EXTR would be too compressive, tending to artificially sharpen the front thus

hindering the effects of the transverse dispersivity coefficient.
Fig. 6. Computational results of the saltpool problem for the low density case: (a) cross-sectional distributions at 150 (left) and 1000

(right) s for grid 2, (b) salinity breakthrough curves at the outlet obtained for grids 1 and 2.



Fig. 7. Computational results of the saltpool problem for the high density case: (a) cross-sectional distributions at 2000 s for grid 2, (b)

salinity breakthrough curves at the outlet obtained for grids 1 and 2.
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Remark 2. The explicit nature of the time stepping scheme employed in the discretization of the advective

component enforces a stability restriction on the advective time step size. This results in higher accuracy

with respect to the discretization of the dispersion fluxes. We believe that this is the one of the reasons

for the good performance of the scheme as compared to the approach of [10].
5. Conclusions

The numerical solution of high density convection dominated flows in three-dimensional porous media is

a challenging task because of numerical difficulties and computational requirements. In this paper, we pres-

ent and analyze an algorithm based on the combination of the MHFE scheme with the finite volume ap-

proach. The combination is based on the time splitting of the dispersive and advective components of the
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Fig. 8. Comparison between the BJ limiter and extremum limiter case 1 (left) and case 2 (right).
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transport equation. The overall approach has been tested on two well known benchmark cases. The ob-

tained solution accuracy and numerical efficiency well compare with respect to other schemes. In particular,

the time accuracy and the robust limiter-reconstruction combination seem to be the key points for the suc-

cess of the proposed numerical discretization. The fact that the time-splitting algorithm allows for the use of

smaller time step sizes for the integration of the advective flux as compared to the dispersive flux is funda-

mental in capturing the fronts that develop in the case of large density differences. At the same time the

selection of truly three-dimensional limiters that guarantee high accuracy also in the multidimensional case

is crucial to obtain meaningful solutions on relatively coarse grids.
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